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The base-flow and near-wake problem at very low 
Reynolds numbers 

Part 2. The Oseen approximation 

By H. VIVIAND AND S. A. BERGER 
University of California, Berkeley 

(Received 2 February 1965 and in revised form 18 May 1965) 

The influence of inertia terms in the equations of motion on the properties of the 
base-flow and near-wake flow at very low Reynolds numbers is investigated by 
using Oseen’s approximation and by comparing with the results obtained in 
Part 1 for Stokes flow. The general solutions of Oseen’s equations of motion are 
derived for two-dimensional and axisymmetric flows in the half-space x > 0, for 
an arbitrarily given velocity field in the plane x = 0. Numerical examples are 
given for two-dimensional flow and compared with Stokes-flow examples. 

1. Introduction 
In  Part 1 a study was made of the base-flow problem for low Reynolds numbers, 

the basic assumption being that the non-linear convection terms were negligible 
and could be dropped from the equation of motion. The basic equations could 
then be solved with arbitrary boundary conditions for both plane and axisym- 
metric flows. 

In  this part, the Oseen approximate equations of motion are considered. In  
this approximation the convection is assumed to take place with some constant 
velocity rather than the actual local velocity. In  its original form, Oseen’s theory 
takes this convection velocity equal to the free-stream velocity so that the 
Navier-Stokes equations are represented with great accuracy in regions of the 
flow field far from any solid surface. Following Lewis & Carrier (1949), we use 
a convection velocity equal to cU,  where the constant c lies in the range 0 c c < 1 
and is to be chosen so as to obtain a more accurate representation of the convec- 
tion velocity over the entire flow field. 

The Oseen equations, like the Stokes equations, are valid approximations at 
low Reynolds numbers,t and in contrast to the Stokes equations are uniformly 
valid at large distances from solid bodies. However, in the context of the base- 
flow problem, it is not clear whether or not they represent an improvement over 
the Stokes equations; this will depend on the particular conditions considered. 
In  a general way if 6 9 1, where 6 = 6Ja, is the ratio of initial boundary-layer 
thickness to base height or radius (figure l), then the Oseen approximation is 
likely to be more accurate; on the other hand, if S w 1, the base-flow region takes 

t We exclude from this discussion the case where the Oseen linearization is based on 
a small perturbation type analysis, independent of the magnitude of the Reynolds number. 
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on more importance and the inclusion of linearized inertia terms may be a worse 
approximation in this region than completely neglecting them. 

Therefore the Oseen approximation is not put forward as a specific improve- 
ment upon the Stokes approximation, but rather as a means of evaluating the 
effects of increasing Reynolds number; the results being given only qualitative 
value, we shall allow the Reynolds number to take on values larger than the 
maximum ones permitted in Stokes flow. 

H .  Viviand and S .  A .  Berger 

FIGURE 1. 

XI 0 

Sketch of base flow : (a) high-Reynolds-number, supersonic flow; 
( b )  low-Reynolds-number flow. 

2. The basic equations 
Setting u = c and v = 0 in equations (2 .2 )  of Part 1, and introducing 

R = &Ral, (2 .1 )  

we obtain the Oseen form of the momentum equations 

( 2 . 2 a )  

( 2 . 2 b )  
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The corresponding vorticity equation is given by 

The method of solution is as follows: the vorticity equation (2.3) is solved fist ,  
assuming that Q(0, y) = R,(y) is given. The stream function is then obtained from 
equation (2.6) of Part 1 if $(O,  y) = $,(y) is known, and the pressure results from 
equations (2 .2) .  Once this solution has been obtained, one can easily deduce the 
solution which corresponds to given v(0, y) = v,(y) instead of Q,(y), and to 
given $i(Y). 

3. Two-dimensional Oseen flow 

With j = 0, equation (2.3) becomes 

3.1. The vorticity 

a~ a2Q a2n 

ax ax2 ay2 
2 R - = - + -  

and is to be solved in the half-plane x > 0, with the boundary condition 

The method of separation of variables yields the following solutiont 
Q(0,Y) = Q,(Y)* (3.21 

Q = exp(-Kx)(Acoshy+Bsinhy), 

Equation (3.1) being linear, a more general solution can be constructed, of the 
form 

where K = d(R2+h2)-B. (3.3) 

(3.4) ~ ( x ,  y) = s,” exp ( - KX) [A(A)  cos hy + B(A) sin ~ y l  d h ,  

where A(h) and B(h) are arbitrary functions with the only restriction that the 
integral shall exist. 

Equation (3.4) will represent the solution if condition (3.2) can be satisfied, 
namely 

~ , ( y )  = [ a  [ ~ ( ~ ) c o s h y + ~ ( h ) s i n h y l d h .  (3.5) 
* o  

Separating each side of equation (3.5) into even and odd components in y, we 
obtain 

Q[Q,(y)+Q& -y)] = JrnA(hfcosAydA, ( 3 . 6 ~ )  
0 

(3.6b) 

Fourier reciprocity formulae then give (Courant & Hilbert 1962, vol. I, p. 80) 

[Q,(y)+Q,( - y ) ]coshydy ,  ( 3 . 7 ~ )  

(3.7b) 

t Another solution is exp(K’x) ( A  cos h y + B  sin h y ) ,  where K’=J(RZ+ h2) + R but is 
unacceptable since it goes to  infinity with x. 
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and, inversely, equations (3.6) and (3.5) follow from equations (3 .7);  in particular 
if A(h) and B(h),  as defined by equations (3.7)’ exist, then equation (3.4) has 
a meaning and gives the solution. In  what follows, we assume that Q,(y) --f 0 as 
IyI -+m fast enough for A(h) and B(h) to exist. 

In  the particular case of symmetric flow, we have Qi( - y )  = -SZi(y) and 

( 3 . 8 ~ )  
equations (3.7) become 

A(h) = 0, 

3.2. The stream function 

In  two-dimensional flow, equation (2 .6)  of Part 1 is Poisson’s equation 

V2$ = -Q@, y), 

= PAY). 

where SZ is now given by equation (3 .4);  we add the boundary condition 

Let us decompose $ into a potential and a rotational component 

II. = $P+ $ R 9  

such that vz$p = 0,  $P(O,Y)  = $AYL 

v21kR = - Q(x, y ) ,  $R(O, !/) = O .  

(3 .86)  

(3 .9)  

$ p  is obtained immediately by means of Poisson’s integral for a half-plane 
(Courant & Hilbert 1962, vol. 11, p. 268) 

(3.10) 

To solve for 
the calculations are shown in Appendix I, and the result is 

we follow the technique of separation of variables used for SZ; 

1 
x [ A  ( A )  cos hy + B(h) sin hy]  h2 dh.  (3.1 1 )  

3.3. The velocity field 
According to equation (3 .9) ,  we can write 

u = u p + U R ,  v = V p + v R ,  

with UP = W’rPy, vp = - W p l k  
vR = -a$,lax. uR = a$‘R/ay, 

The general expressions for u and v are then easily obtained through equations 
(3 .10)  and (3.11).  The only difficulty concerns the calculation of up at x = 0, since 
this quantity cannot be obtained directly from equation (3.10).  



BaseJlow and near wake at low Reynolds numbers. Part 2 443 

Let us calculate wp(x, y) in a different way, using 

3 - -- a u ~  (since ~ 2 $ ~  = 0) 
ax ay 

and V2Up = 0, up(0, y )  = Ui(Y) .  

Following the method of Q 3.1 in the particular case of R = 0, and restricting 
the calculations to the case of symmetric flow,? we find 

where 

After an integration by parts we obtain 

Therefore 

and 

(3.12) 

(3.13) 

(3.14) 

From equations (3.11) and (3.14) we now deduce v,(y) for symmetric flows 

As far as the numerical calculation of up is concerned, equation (3.12) may be 
replaced with advantage by Poisson’s integral 

(3.16) 

Using equations (3.11) and (3.161, the velocity on the x-axis, for symmetric 
flows, is found to be 

(3.1 7 a )  U O W  = up(x ,  0) + U R ( X ,  01, 

where (3.17b) 

m 
u&, 0) = L!- 1 [J(R2+ h2) +R] exp ( - K x )  - exp ( -Ax) !!@ dh. ( 3 . 1 7 ~ )  

2 R  0 A 

3.4. The pressure field 

Equation (2.2a),  with j = 0, together with equation (3.4)’ results in 

x [B(h)coshy-A(h)sinhy] (l/h)dh. (3.18) 

t The extension to asymmetric flows is obvious and is not given here to simplify the 
equations. 
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Equation (2.2 b) is then automatically satisfied, as one would expect, since 
equation (2.3), which has been used to solve for a, is a consequence of the two 
equations (2.2). 

On the x-axis, we find 

1 "  
po(2 ) -pm = 1 - uo(x) + =J0 [ J(R2 + h2) + R] exp ( - Kx) dh.  (3.19) 

C 

The pressure a t  x = 0, in the case of symmetric flow, is 

3.5. Solution in terms of vp(y) 
Here also we restrict the calculations to symmetric flow. We assume now that 
vi(y) is given as a boundary condition instead of sl,(y) so that B(h) is unknown. 
Let D(h) be the inverse Fourier sine transform of vi(y) 

so that 

D(h) = - sin hyv,(y) dy, n o  S" 

since vi(y) is assumed to be an odd function of y. 
Comparing equations (3.22) and (3.15), we see that 

Hence 

(3.21) 

(3.22) 

(3.23 a )  

= (3.23 b )  

When B(A) is determined, the solution presented in $0 3.1 to 3.4 applies. 

4. Axisymmetric Oseen flow 
The calculations concerning axisymmetric flow follow very closely those of Q 3 

for two-dimensional flow, and the results show a striking similarity; the main 
difference lies in the use of Fourier-Bessel integrals instead of Fourier sine or 
cosine transforms. 

4.1. The vorticity 

Wi th j  = 1, equation (2.3) becomes 

aa a2a a2a i a s l  sl 
ax ax2 a92 ay y2'  

(4.1) 2R- = -+-+---- 

and is to be solved for x 2 0, y 2 0, with the boundary conditions 

Q(0,Y) = Qi(Y), ( 4 . 2 ~ )  

Q ( X , O )  = 0. (4.2 b)  
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By the method of separation of variables, we find the following solution to 
equation (4.1) 

~ ( x ,  y) = lom exp ( - ~ x )  J,(M ~4 (A) d h ,  (4.3) 

where K = J(R2+h2)-R, and where Jl(z) is the Bessel function of order 1. 
Condition (4.2b) is then satisfied and condition ( 4 . 2 ~ )  gives 

According to the Fourier-Bessel double integral formula (Bowman 1958, 
pp. 113-14), we have 

so that condition (4.4) will be satisfied by taking 

A(h) = jom Ri(t)Jl(ht)tdt. (4.5) 

We have assumed all the preceding integrals to exist; a sufficient condition for 
this to be true is that (Bowman 1958) 

a+(t)t8+0 as t+m. 

4.2. The stream function 
Equation (2.6) of Part 1, withj  = 1, becomes 

DZ$ = - Y Q ( X , Y ) ,  

where R is given by equation (4.3); equation (4.6) is to be solved for x 2 0, y 2 0, 
with the boundary conditions 

$(O,Y) = $i(P), ( 4 . 7 ~ )  

$ ( X , O )  = 0. (4.7 b)  

Let $ = $P+$R, (4.8) 

where Dz$p = 0, $P(O,Y) = $i(Y)Y $P(G 0) = 09 

O2$R = -yR2(x, y), $R(O, y) = O, $R($, O) = O .  

The solution for qP has already been given in connexion with Stokes flow (see 
equation (5.3) and Appendix I of Part 1): 

The calculation of $R is shown in Appendix I; we find 

1 
$R = gj 9 jom [ J( R2 + h2) + R] [exp ( - K x )  - exp ( - AX)]  J1( hy)  dh .  

(4.10) 
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4.3. The velocity Jield 
Following the decomposition (4.8), we let 

u = U P + U R ,  v = v p  + V R ,  

with up = Y-'(a@P/aY), v p  = - y-'(a@p/a49 

UR =y-l(a$R,/ay)t O R  = -y-'(a$R/ax)7 

so that u and v are easily obtained from equations (4.9) and (4.10), with the 
exception of v,(O, y). 

As in $2.3, let us calculate v,(x,y) in a different way. From D2$rP = 0, we 
deduce 

We also have 

(4.11) 

Note that equation (4.11) is of the form of equation (4.1) with R = 0; therefore, 
following the method of 3 4.1, we find 

a0 9 = 1 exp ( - Ax) J,(Ay) AC(A) dA,  a?/ . 0 

where 
- -  

C(A) = joW y) tJ.(At)dt. (4.12) 

Now using av,/ax = aup/ay, and after an integration with respect to x, we obtain 

(4.13) 

We then use eqwtions (4.10) and (4.13) to calculate v(0,y) = vi(y) 

The velocity on the x-axis, uo(x), can be obtained as the limit, as y --f 0, of 2@/y2. 
Using equations (4.9) and (4.10), we find 

U O ( 4  = up(x, 0) + U R b ,  01, (4.15 a )  

with (4.15b) 

[ J(R2 + A2) + R] [exp ( - Kx) - exp ( - Ax)] A ( A )  dA. 

(4.15 c) 

By successive integrations by parts, equation (4.15b) can be transformed into 

(4.15d) 

( 4.1 5 e) 
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4.4. The pressure $eld 
Equation ( 2 . 2 ~ ) ~  withj  = 1, is easily integrated, and we find 

'--r),+u- 1 = [ J ( R 2 + h 2 ) + R ] e x p ( - K ~ ) J o ( A y ) A ( h ) d h ,  (4.16) 
C 

where Jo(z) is the Bessel function of zero order and the relation 

J,(z) + zJ;(%) = d o ( % )  

has been used. Equation (2.2b) is then automatically satisfied. 

4.5. Solution in terms of vi(y) 

Now we assume that vi(y) is given as a boundary condition, instead of Q,(y),  so 
that A(h) is unknown. Applying the Fourier-Bessel double integral formula to 
vi, we can write 

(4.17) 

D(A) = tJ,(ht) Vi(t) at. lo rn  where 

Comparing equation (4.17) with (4.14), we see that 

Hence 

1 
2R 

hD(A) = - C(h)  - - [ J(R2 + h2) + R - A] A@).  

AD@) + C(h)  

= -[J(R2+h2)+h-R] 

A(h) = - 2R ~ _ _ - _ _  
J(R2+ h2) + R - A 

(4.18) 

(4.1 9 a )  

(4.19 b)  

5. Numerical examples and discussion 
5.1. Generalities 

The main purpose for studying the Oseen solution to the base-flow problem being 
a qualitative evaluation of the inertia effects which were neglected in the Stokes 
solution, numerical examples have been carried out only for two-dimensional 
symmetric flows. The examples of Stokes flow presented in $ 6  of Part 1 show that 
there is no remarkable difference between the two-dimensional and axisymmetric 
cases, and the results of $0 3 and 4 of this Part show that this similarity persists 
in Oseen flow. 

Conditions were furthermore restricted to the case vi(y) 3 0, so that the 
required boundary condition, wi(y) = 0 for IyI < 1, was satisfied in the simplest 
possible way. The initial velocity profile (2-component) was then chosen as 

ui(y)  = [ g ) 3 ( 1 0 - 1 5 e + 6  6 ( y-l (1 < Y 6 S + l ) ,  
(5.1) I 0 (0 < y < I ) ,  

1 (y 2 6+1),  

ui( - y )  = ui(y) (symmetric flow). 
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This profile has the property that dui/dy and d2ui/dy2 are everywhere continuous, 
in particular at y = 1 and y = S+ 1; it  will be shown in Appendix I11 that, as in 
Stokes flow, du,ldy must be continuous if the pressure is to remain bounded. 
Equation (5.1) is represented in figure 2 (curve 11) for S = 1 ; one sees that there 
is very little difference with the cosine profile (curve I) used in Stokes flow ( 5  6 of 
Part 1) so that comparison with the examples of Stokes flow will be possible. 

3 

Y 

2 

1, 
/ 

/ 
/ 
/ 
/ 
/ , 

/ 

/ 

0; 

I ‘ D U j ,  V j  

0.5 1 

I Stokes flow (from Part 1) 
I1 Oseen flow 

-.-.-.- X 

FIGURE 2. Velocity profiles at  2 = 0. 8 = 1. 

In  order to study the effects of Reynolds numbers, the initial boundary-layer 
thickness 6, was changed together with RL,, according to boundary-layer theory,? 
namely, 8, N Ll/JRL1. For a particular solution to be determined, only S and 
R = QcR,, need to be given; we expect that an ‘optimum’ value for c, determined 
for instance by comparison with experimental results, would change with 6, very 
likely increasing with 6; but, since we do not have enough information about this, 
the value of c is assumed to remain constant, although not actually specified, as 
RL, and 6 vary. 

Taking S,IL, = M./.JRL, we find that 

S = &,/al = a J{L,C/(~U,R)}. 

The calculations were carried out for 

6 = JWR) ,  
7 Even though RL, may be too small for this to  be accurate. 
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corresponding to a2L,c/a, = 6. To illustrate this discussion, let us take ,the 
following hypothetical values: 

a2 = 10, c = 0.1, LJa, = 6. 

We can then find the values of Reynolds numbers for the values of I3 used in the 
examples, and these are given in table 1. 

The only quantities calculated are the velocity and pressure on the x-axis and 
the pressure at x = 0. The method of calculation is described in Appendix 11. 

S R = 318' Rat = 20R RLL = 120R 

0.6 8.33 166.66 1000 
1.0 3.0 60.0 360 
1.4 1.53 30.61 183.7 
2.2 0.62 12.4 74.4 

TABLE 1 

0.5 

0.4 

0.3 

0 

-0.1 
0 1 2 3 4 5 6 7 8 

X 

FIGURE 3. Velocity on z-axis for two-dimensional Oseen flow. vi 0. Curve I, S = 0.6, 
R = 3/aa = 8.33; 11, S = 1.0, R = 3.0; 111,s = 1.4, R = 1.53; IV, 6 = 2.2, R = 0.62. 

5.2. Velocity on x-axis 
Figure 3 shows the velocity on the x-axis for various 6. We notice the existence 
of negative velocities indicating a recirculating flow region; this does not happen 
in Stokes flow when vi = 0 and therefore we can conclude that inertia effects alone 
are responsible for the existence of this recirculating zone! More precisely, we 
should compare curve A @&)) of figure 7 of Part 1 with curve I1 of figure 3, 
corresponding respectively to R = 0 and R = 3, both for I3 = 1 and practically 
identical boundary conditions. The recirculating zone, which does not exist a t  
R = 0, extends downstream over a distance equal to 1-9al at R = 3, and is 
accompanied by a lower rate of increase of uo with x. 

29 Fluid Meoh, 23 
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Curves I to IV (figure 3) show how the combined variations of R and 8 affect 
ZL,,(X); of particular interest is the position of the rear stagnation point, shown in 
figure 5 as a function of R. As R-t  0, the rear stagnation point moves upstream 

X 

1 2 3 4 5 6 7 8 
0 

-0.1 

-0.3 

FIGURE 4. Pressure on x-axis for two-dimensional Oseen flow. vi 0. Curve I, 6 = 0.6, 
R = 3/62 = 8.33; II,6 = 1.0, R = 3.0; 111,6 = 1.4, R = 1-53: IV, 8 = 2.2, R = 0.62. 

5 

4 

1 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

R 

FIUURE 5. Position of rear stagnation point and maximum backflow velocity 
in two-dimensional Oseen flow. wi f 0,6 = J(3 /R) .  

until i t  reaches the base for R = 0 (since vi = 0); we know that, in the case 
vi(y) 2 0, the limiting position would be slightly downstream of the base. As 
R increases the rear stagnation point moves continuously downstream; but we 
must, of course, restrict the results to relatively small values of R, and the fact 
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that the length of the separated flow region goes to infinity with R is of no 
significance here. 

Also of interest is the maximum backflow velocity uoM shown in figure 5. 
IuoMl goes through a maximum of 0.02 at R w 5 and then decreases as R increases; 

R 

0 

X 
h 

h 

H 
v 

Fqo -0.2 
v 

- 0.3 

FIGURE 6. Pressure at  base centre in two-dimensional Oseen flow. 
vi 0, 6 = J(3 /R) .  

5 

1 2 3 4 

FIGURE 7. Pressure on x-axis in two-dimensional Oseen flow : influence of value of c. 
8 = 1, vi 0. Curve I, R = 0.5; 11, R = 1.0; 111, R = 2.0; IV, R = 3-0. 

29-2 
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we see that the velocity in the recirculating zone, although much higher than in 
Stokes flow, is at most of the order of a few percent of the free-stream velocity, 
even when this zone extends several base heights downstream. 

3 

2 

Y 

1 

0 

Curve R 

6 = 1  

vi- 0 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 

(Pi(!/) - P m )  x !&a, 

FIQTJRE 8. Pressure a t  5 = 0 in two-dimensional Oseen flow: influence of value of c. 
8 = 1, vi 0. Curve I, R = 0-5 ;  11, R = 1.0; 111, R = 2.0. 

5.3. Pressure 

Figure 4 shows the pressure on the x-axis, and figure 6 the pressure at the base 
centre (x = 0, y = 0) for various R and 6. The calculations give the quantity 
(po(x) - p m ) / c  so that the actual value of the pressure is not known until a value 
has been attributed to c ;  however, if we assume c to be constant as R and 6 vary, 
the results still show the influence of the Reynolds number on the pressure. 

We can compare the pressure at R = 0 (curve A ,  j?o(x)-2)m of figure 7 of 
Part 1) with the pressure at R = 3 (curve I1 of figure 4), for practically identical 
boundary conditions, by using the relation p0(x) - jPm = 2R(po(x) - p m ) / c ;  the 
pressure is found to be higher and more uniform at R = 3 than at R = 0. 

The pressure at x = 0 (figure 8) was calculated only for 6 = 1, and various R, 
in order to study the influence of the value of c (see $5.4). Note the strong 
decrease of base pressure from the centre to the edge of the base, followed by 
a strong increase above the base and then a return to free-stream pressure. Since 
the separated-flow region behind the base is small in extent the flow must turn 



BaseJlow and near wake at low Reynolds numbers. Part 2 453 

sharply at the base. The pressure profile shown in figure 8, with its pronounced 
minimum and maximum, is necessary to cause the flow to make this sharp turn 
and then take up the recirculatory pattern characteristic of the separated-flow 
region. 

The influence of the value of c on the solution was studied in the case 6 = 1, for 
a fixed (unspecified) value of Ral; changes in R then come only from changes 
in c through the relation R = &cRal. 

The results for the velocity on the x-axis indicate changes with R of the order 
of magnitude of those shown in figure 3; we can conclude that the velocity, hence 
the position of the rear stagnation point, for fixed 6 and Ral, are very sensitive 
to the value of c. This property could be used to determine an optimum value 
of c by comparison with experimental results, assuming that the calculations are 
made with an experimentally determined initial velocity profile. 

The results for the pressure (figures 7 and 8) show a much smaller dependence 
on c.  Since c is now the variable parameter, we must consider 

5.4. InJluence of the value of c 

@-Prn)RIC = &@-Prn)Ra1 

instead of (p-prn) /c .  Because of its large variations with y ,  the pressure a t  
x = 0, pi(y), is less influenced, relatively speaking, than the pressure on the 
x-axis. 

5.5. The Stokes solution as a particular case of the Oseen solution 

It is clear that the method used to solve for the Oseen flow could be used in 
Stokes flow, the only difference being that we have R = 0, hence K = A. This 
change can be made without difficulty in the expressions giving the vorticity and 
the pressure, equations (3.4), (3.18), (4.3) and (4.16). For the stream function, 
direct substitution is not possible. $p, equations (3.10) or (4.9), of course, 
remains unchanged, but the integrand in equations (3.11) or (4.10) giving $R, 

becomes of the form 010 if we let R = 0, K = A. However, going back to 
Appendix I, we can solve for equation (A 4) again, where now K = A, and we find 
X ,  = (1124 x exp ( - Ax). 

Therefore, the results for $R become, when R = 0, in two-dimensional flow 

and in axisymmetric flow 

(5.2a) 

(5.2b) 

It is noteworthy that the decomposition used for the stream function in Oseen 
flow, 4 = $p + $-n, becomes identical, when R = 0,  to the one used in Stokes 
flow, equation (3.12) of Part 1, namely $ = c-x(WJax+G);  we thus have 

when R = 0. 
$p  = v,, 
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The relation between Qz,(y), v&y) and u&) takes the form, when R = 0, in two- 
dimensional symmetric flow, equation (2.32 b ) ,  

B(A) = - 2h [ D(h) + ~ “yj, 
and in axisymmetric flow, equation (4.19b), 

(5.34 

(5 .3h)  

In  the particular case w&) = 0, D(h) = 0, and we recover the result given in 5 6.4 

Qz,(y) = - 2(du,/dy).  

6. Conclusions 
The two-dimensional and axisymmetric base-flow problems at very low 

Reynolds numbers have been solved according to the Stokes and the Oseen 
approximations. The main conclusions which can be drawn from the study of 
the solutions and of numerical examples are the following: 

(1) In  the limit R+ 0, the flow is able to turn around the base edge and enter 
into the base region without creating an important separated-flow region. In  
Stokes flow (R = 0 ) ,  there is no recirculating zone if wt(y) < 0 or if w&y) = 0 (for 
y > 0, symmetric flow); there is one if wi(y) 2 0 (y > 0 ) ,  but it is of small extent, 
in the axial direction, as long as v i ( y )  remains small compared to u&). 

As R increases, inertia effects tend to increase the length of the separated-flow 
region and, at the same time, to reduce the rate of increase of uo(x)  with x; these 
effects seem to be very sensitive to the value of the Reynolds number. 

( 2 )  The base and near-wake regions are characterized by large velocity and 
pressure gradients; in particular, the base pressure varies strongly with y, 
decreasing from the centre to the edge of the base. As R increases, inertia effects 
tend to lessen the intensity of these gradients. 

( 3 )  A discontinuity in shear stress at x = 0 results in an infinite pressure a t  
the point of discontinuity; as a consequence the initial velocity profile must be 
of the separation type, that is, we must have 

du,(y)/dy -+ 0 as y -+ 1 + . 
(4) There is a striking similarity between the two-dimensional and the 

axisymmetric cases in the method of solution and in the properties of these 
solutions. The only noticeable differences, observed in the numerical examples, 
and for identical boundary conditions, are quantitative; velocity and pressure 
gradients are appreciably higher, pressures are lower, and, in a general way, the 
departure from uniform flow is higher in axisymmetric flow than in two- 
dimensional flow. 

As a final comment, we would like to point out that the solutions obtained here 
for Stokes and Oseen flows can be used in connexion with any prescribed velocity 
distribution in the plane x = 0; in particular, they could find applications in 
problems of jets issuing from the plane x = 0 into a fluid either at rest or having 
some non-zero velocity at infinity. 



Base $ow and near wake at low Reynolds numbers. Part 2 455 

Appendix I 

stream-function $R in Oseen flow. 
In  this appendix we derive the solution for the rotational component of the 

Two-dimensional flow 
$R satisfies Poisson’s equation 

v2$R == - Q(x, y), (A 1) 

with the boundary condition 1crR(O, y )  = 0. (A 2 )  

Taking into account the form of a, equation (3.4), it is clear that $R will be of 
the form 

(A 3) 

Then equation (A 1) reduces to an ordinary differential equation for X,(x; A )  
considered as a function of x only 

(A 4) 

where a prime denotes differentiation with respect to x. The general solution of 
equation (A 4) is 

+R = lom xl(x; A)  [A(A)  cos ~y + B(A) sin ~ y l  dh .  

Xi - A2X, = - exp ( - Kz) ,  

exp ( - Kx) 
X1(x ;  A )  = - K2 - A 2  

+ a1 exp + OL2 exp ( - A z ) 7  

a, and ay being arbitrary constants. 

condition (A 2)  he satisfied. Then 
We must take a, = 0 so that $R -+ 0 as x+ co and a2 = 1/(K2 - A2) so that 

exp ( - K z )  - exp ( -Ax) d(R2 + A2) + R - 
- 2RA2 A2- K2 

{exp ( - K x )  - exp ( - Ax)}. X,(x;A)  = 

(A 5 )  
Hence $, from equation (A 3) 

1 
A2 

x [A@) cos Ay + B(A) sin Ay] - dh. (A 6) 

Axisymmetric flow 
+R satisfies 

(A 7)  
a2 a 2  1 a 

ax2 ay2 yay’ 
$R(O, Y )  = O ,  (A 8) 

$n(z,O) = 0. (A 9) 

D2pkB = - yQ(x, y), where D2 I - + - - - - 

a is given by equation (4.3). 
Writing 
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we find that X 2 ( x ;  A)  must satisfy the same equation as X,, equation (A 4), and 
the same boundary conditions, so that X, = X,. Use must be made of Bessel’s 
equation. 

Equation (A 10) then gives 
J;(Z) + ( l / Z )  Ji(2) + (1 - 1/22) J,(Z) = 0. 

1 m  II. = 

Appendix 11 

for Oseen flow. 

integrations by parts, we find 

C(h)  = -~ (1-12/(Sh)2)(cos{(6+ l)h}-cosh)-- (sin{(d+l)A}+sinA) . 
(B 1) 

Equation (B 1) is not suited for the calculation of C(h)  a t  very small values of 
h and we must use a series expansion 

y I. [ , / ( ~ 2  + ~ 2 )  + RI [exp ( - ~ x )  - exp ( - A X ) ]  J , ( A ~ )  dh .  
h 

( A l l )  

We now indicate the main steps in the calculation of the numerical examples 

First, we calculate C(h)  according to equations (3.13) and (5.1); after several 

1 6 
7l ( 6 4 3  6h 120 [ 

where 

1 
2 (A + 1)2n+4 - A2nf4 - ~ 6 {(A + l)2n+5+ A2n+5 

2n+5 (2n + 4 )  ! AZn+l 
Czn = ( -  1)” 

l3 {(A + 1)2n+6 - A2n+6 +- 
(2n + 5 )  (2n + 6 )  

and A = 6-l. 
By taking the first eight terms in the series, we found that C(h)/h could be 

obtained with a quite sufficient accuracy up to h = 0.4. For h > 0.4 we used 
equation (B 1). B(h) can now be obtained from equation (3.233) with D(h) = 0 
(since vi = 0 )  

(B 4) 
C(h)  B(h) = - [ J ( R 2 + h 2 ) + h - R ] -  

A -  
Velocity on x-axis 

Equation (3.17~) then gives 
co 

2;1’ I. + h2) + R + A] [exp ( - K x )  - exp ( - Ax)] 9 d h .  (B 5 )  

u,(x,O) is given by equation (3.173). ui(y) being a polynomial in y, we can 
integrate analytically, and the result is 

h 
UR(X,0) = ~ 

36(6+ 2) (4x2 + &Y2 - 46- 4) 

+ {3x4 - 5 ( P  + 66 + 6 )  x2 + 15(6 + 1)2) In 

1 - - { 15(6 + 2) (x2 - 26 - 2) x2 + 10s2 + 156 + 6} 
X 

x tan-, - -tan-, - { (“5’) ($11. (B 6, 
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Pressure on x-axis 
Equation (3.19) gives 

Pressure at x = 0 

From equation (3.20) we deduce 

P,(Y) - P m  = l - ~ ~ ( y ) - ~ / ~  1 "  [ ~ ( R a + h 2 ) + R + h ] c o s h y ~ ) d h .  (B 8) 
c 

Simpson's method of integration was used in successive intervals 

(0, H ) ,  ( H ,  2 H )  * * * {(n- 1) H ,  n q ,  

until the contribution from the last interval was found to be a negligible fraction 
(say of the total result. 

Appendix III 
In this appendix we consider a two-dimensional Oseen flow defined by an 

initial velocity profile ui(y) having a discontinuous slope at y = 1 ; we show that 
this leads to a logarithmically infinite pressure at this point. 

The simplest profile having non-zero slope at  y = 1 is a linear profile of the form 

I (0 < y < 1)' 

(y 2 s+ 1)' 

ui(y) = (y- l ) /S (1 < y < S + l ) ,  

W&J) = 0. 

C(h)  = --- [cos{(6+ 1)h)-cosh], 

i: 
ui( - y) = u i (y )  (symmetric flow). 

We also assume 
Therefore, from equation (3.13) 

2 1  
776 h 

and the pressure a t  x = 0 can be obtained from equation (B 8) in Appendix 11. 
Examination of equations (B 8) and (C 2 )  shows that the integrand in equation 
(B 8) presents no singularity for h 2 0. so that any possible divergence of the 
integral must come from the upper limit of integration, h+00. 

For h -+ 00, the integral behaves like 

m 1  
- [cos {(y - 1)h) - cos {(y - 6- 1)h) + cos {(y + 1)h) - cos{(y + 6+ l)h}I dh. Lo 

Let a stand for any of the following quantities: 

We know that 
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is bounded as long as a $. 0. For a+ 0, we can write 
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J I F d A  = j T a e d t  t 
- 1na. 

Thus we see that the pressure becomes logarithmically infinite at any of the points 
of discontinuity of du,ldy. 

We were not able to give a similar proof for axisymmetric Oseen flow; however, 
it  is clear that such a proof, either in two-dimensional or in axisymmetric flow, is 
completely independent of the value of R.7 Therefore, the above property con- 
cerning the pressure at y = 1, having been verified in axisymmetric Stokes flow 
( R  = 0)) holds also for R =!= 0 in axisymmetric Oseen flow. 
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